
Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
Improving the Efficiency of Interactive Sequential Pattern Mining by Incremental
Pattern Discovery

Ming-Yen Lin and Suh-Yin Lee*
Department of Computer Science and Information Engineering

National Chiao Tung University, Taiwan 30050, R.O.C.
E-mail: {mylin, sylee}@csie.nctu.edu.tw

Abstract

The discovery of sequential patterns, which extends
beyond frequent item-set finding of association rule mining,
has become a challenging task due to its complexity.
Essentially, a user would specify a minimum support
threshold with respect to the database to find out the
desired patterns. The mining process is usually iterative
since the user must try various thresholds to obtain the
satisfactory result. Therefore, the time-consuming process
has to be repeated several times. However, current
approaches are inadequate for such process due to the
long execution time required for each trial. In order to
minimize the total execution time and the response time for
each trial, we propose a knowledge base assisted
algorithm for interactive sequence discovery, called KISP.
KISP constructs a knowledge base accumulating the
pattern information in individual mining, eliminates
considerable amount of potential patterns to facilitate
efficient support counting, and speeds up the whole
process. In addition, we further optimize the algorithm by
direct generations of the reduced candidate sets and
concurrent counting of variable sized candidates. For
some queries, KISP may eliminate database access
completely. The conducted experiments show that KISP
outperforms GSP, a state-of-the-art sequence mining
algorithm, by several orders of magnitudes for interactive
sequence discovery.

1. Introduction

Mining sequential patterns, which finds out temporal
associations among item-sets in the sequence database, is
an important issue in data mining [2, 4, 6, 7, 13, 16]. A
classic application of the problem is the market basket
analysis whose database contains purchase records, where
each record is an ordered sequence of itemsets (sets of
items) bought by a customer. The objective is to discover
the itemsets in future purchase after certain itemsets were
bought. For example, we may obtain a sequential pattern
“(1, 3, 4)⇒(2, 5) [support=30%]” after mining. The
 0-7695-1874-5/0
pattern indicates that 30% of the customers who purchase
items 1, 3 and 4 at the same time would buy items 2 and 5
later. The mining technique can be applied to various
domains such as discovering the relationships between the
symptoms and certain diseases in medical applications. In
comparison to the mining of association rules [3],
sequential pattern mining is more complicated because not
only the frequent itemsets but also the temporal
relationships must be found.

The mining process is very difficult and
time-consuming because patterns could be formed by any
permutation of itemsets formed by any combination of
possible items in the database. In order to distinguish the
interesting patterns, a user must supply a minimum support
threshold (abbreviated minsup) for the mining. The result
of mining finds out the set of patterns having supports
greater than or equal to the minsup. The support of a
pattern is the percentage of sequences (in the database)
containing the pattern. The discovered patterns are called
sequential patterns or frequent sequences. Most
approaches focused on minimizing the search space of
potential sequential patterns (called candidates) [2, 14], or
on minimizing the required disk I/O due to the multiple
database scanning [13, 16]. All these approaches discover
the patterns by directly executing the mining algorithms
once a minsup is specified.

However, the mining process is typically iterative and
interactive since a user may specify a minsup value that
results in too many or too few patterns. Usually, the user
must try various minsups until the result is satisfactory.
Nevertheless, most approaches are not designed to deal
with repeated mining under such circumstance so that each
minsup invokes a re-mining from scratch. Some
approaches solved the interactive problem by
pre-processing using an assumed least minsup [11].
Nevertheless, the lengthy pre-processing has to be
executed again if a user supplies a minsup below the
assumed least value.

In this paper, we propose a simple approach, called
KISP, to improve the efficiency of sequential pattern
discovery with changing supports. KISP utilizes the
3 $17.00 (C) 2003 IEEE 1

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
information obtained from prior mining processes, and
generates a knowledge base (abbreviated KB) for further
queries about sequential patterns of various minsups.
When the results cannot be directly derived from the
knowledge base, KISP incorporates KB into a fast
sequence discovery by eliminating the candidates existing
in KB before support counting. Unlike those approaches
assuming a least minsup for pre-processing before iterative
mining, KISP accepts any minsup value and has no
difficulty in mining huge databases even with a small main
memory. Furthermore, we provide two optimizations to
speed up KISP. The direct generation of new candidates
eliminates candidate searching in KB and the concurrent
support counting reduces database scanning. The
conducted experiments on well-known synthetic data show
that the proposed algorithm effectively improves the
interactive mining performance.

The rest of the paper is organized as follows. We
formulate the problem of interactive sequential pattern
mining in Section 2 and review some related algorithms in
Section 3. Section 4 presents the proposed approach for
the interactive discovery problem. The experimental
evaluation is described in Section 5. Section 6 concludes
our study.

2. The problem of interactive sequence
discovery

Let Ψ = {α1, α2, …, αz} be a set of literals, called items.
An itemset I = (β1, β2, …, βm) is a set of m items, such that
I ⊆ Ψ. A sequence x, denoted by <a1a2…an>, is an ordered
set of n elements where each element aj is an itemset. The
size of the sequence x, denoted by |x|, is the total number
of items in all the elements in x. Sequence x is a
k-sequence if |x| = k. For example, <(2)(3,4)> and
<(1)(2)(1)> are all 3-sequences. A sequence ω =
<b1b2…bw> is a subsequence of another sequence ϖ=
<a1a2…an> if there exist 1 ≤ i1< i2 < …< iw ≤ n such that b1
⊆ ai1

, b2 ⊆ ai2
, …, and bw ⊆ aiw

. Sequence ϖ contains
sequence ω if ω is a subsequence of ϖ. For instance,
<(2)(5)> is a subsequence of <(2)(1)(3,5)> since (2) ⊆ (2)
and (5) ⊆ (3,5).

Each customer record in the database DB is referred to
as a data sequence, which is a sequence of purchased
itemsets ordered by transaction time. The support of
sequence x, denoted by x.sup, is the number of data
sequences containing x divided by the total number of data
sequences in database DB. The minsup is the user
specified minimum support threshold. A sequence x is a
frequent sequence if x.sup ≥ minsup. The sequence x is
also called a sequential pattern. Given the minsup and the
database DB, the problem of sequential pattern mining is
to discover the set of all sequential patterns, denoted by
S[minsup].

 0-7695-1874-5/0
The interactive sequence discovery process is described
as follows. Given the database DB, the user queries with
several minsup values interactively, and finds out the
desired set of sequential patterns with respect to the final
minsup. The objective of interactive discovery is to
respond to each query quickly, and to minimize the overall
mining time for the whole process accordingly.

3. Related work

3.1. Algorithms for sequential pattern mining

The AprioriAll [2] is the first algorithm dealing with
sequential pattern discovery [2, 7, 15]. In subsequent work,
the same authors proposed the GSP (Generalized
Sequential Pattern) algorithm that outperforms AprioriAll
[14]. GSP discovers the sequential patterns through
multiple database scanning by generating-and-testing
candidate k-sequences in k-th database pass. The
candidates having enough supports become seeds for
generating candidates in the next pass. GSP terminates
when there is no candidate any more. We further describe
the two essential sub-processes in the following.
Candidate generation: Let Sk[minsup] be the set of all
frequent k-sequences, and Xk[minsup] be the set of all
candidate k-sequences with respect to minsup. GSP
generates Xk[minsup] by self-joining Sk-1[minsup] to obtain
a superset of Xk[minsup] and pruning those candidates
having any (k-1)-subsequence which is not in Sk-1[minsup].
In the first step, we join a sequence x with another
sequence y if the subsequence obtained by dropping the
first item of x is the same as the subsequence obtained by
dropping the last item of y. The resultant candidate from
this join is x extended with the last item of y. For example,
the candidate <(1)(3)(5)> is generated by joining <(1)(3)>
with <(3)(5)>, and the candidate <(1)(3,5)> is generated
by joining <(1)(3)> with <(3,5)>. Moreover, Xk[minsup] ⊇
Sk[minsup] [14].
Support counting: GSP stores candidates in a hash-tree
structure [3, 14]. Candidates would be placed in the same
leaf if their leading items, starting from the first item, were
hashed to the same node. The next item is used for hashing
when an interior node, instead of a leaf node, is reached
[14]. The candidates required for checking against a data
sequence are located in leaves reached by applying the
hashing procedure on each item of the data sequence [14].
The support of the candidate is incremented by one if it is
contained in the data sequence.

In addition, the SPADE (Sequential PAttern Discovery
using Equivalence classes) algorithm finds out sequential
patterns using vertical database layout and join-operations
[16]. Vertical database layout transforms data sequences
into item-oriented lists. The lists are joined to form a
sequence lattice, in which SPADE searches and discovers
the patterns [16].
 3 $17.00 (C) 2003 IEEE 2

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
 Recently, the FreeSpan (Frequent pattern-projected
Sequential Pattern Mining) algorithm was proposed to
mine sequential patterns by a database projection
technique [4]. Based on a similar projection technique, the
authors in [12] proposed the PrefixSpan (Prefix-projected
Sequential pattern mining) algorithm. PrefixSpan first
finds the frequent items after scanning the database once.
The sequence database is then projected, according to the
frequent items, into several smaller databases. Finally, all
sequential patterns are found by recursively growing
subsequence fragments in each projected database.
Employing a divide-and-conquer strategy with the
PatternGrowth methodology, PrefixSpan efficiently mines
the complete set of patterns [12].

However, these algorithms re-execute the mining
procedure every time a new minsup is specified during the
interactive process. The response time would be longer for
queries with smaller minsup values.

3.2. Algorithms for interactive pattern discovery

The problem of interactive association discovery was
addressed in [1]. The method in [1] preprocesses the data
in the transactional database, and stores frequent itemsets
in an adjacency lattice. Online repeated queries about
association rules are answered by graph theoretic
searching on the lattice.

Similarly, a knowledge cache is used for interactive
association discovery in [9]. The knowledge cache
contains frequent itemsets and the non-frequent itemsets, if
memory space is available, that have been discovered
while processing other queries. The study [9] indicated
that their benefit replacement algorithm is the best caching
algorithm.

Although on-line association discovery [1, 5, 9, 10] is
close to our problem, these approaches aim to interactively
find frequent itemsets rather than frequent sequences,
which is more complicated. One related work of
interactive sequence mining extended the SPADE
algorithm [16] into the ISM (Incremental Sequence Mining)
algorithm for incremental and interactive sequence mining
[11]. All queries are performed on a pre-processed
in-memory data structure, the Increment Sequence Lattice
(ISL). Therefore, A ‘small enough’ minsup must be
pre-selected to apply SPADE for pre-processing and saving
the results in ISL. Nevertheless, if a query involves a
threshold smaller than the pre-selected minsup, another
(more) lengthy mining process must be performed to
generate a new ISL for the new query. Moreover, as
described in [11], the ISM might encounter memory
problem if the number of the potentially frequent patterns
is too large.

Without any assumption on the minsup value and on the
required memory, the proposed algorithm speeds up
interactive sequence discovery by using the acquired

 0-7695-1874-5/0
information with optimizations like direct
candidate-generation and concurrent counting.

4. The proposed algorithm for interactive
sequence discovery

4.1. The KISP (Knowledge base assisted
Incremental Sequential Pattern) mining algorithm

KISP enhances GSP with a knowledge base (denoted by
KB) for interactive sequence discovery. When the desired
patterns cannot be obtained from KB, KISP speeds up
support counting by eliminating considerable amounts of
candidates existing in KB. Two optimizations, direct
new-candidate generation in Section 4.2 and concurrent
support-counting in Section 4.3, further make a significant
performance improvement. Figure 1 outlines the proposed
KISP algorithm for interactive discovery of sequential
patterns.

KISP works like GSP for the very first mining. The
fundamental KB is built, only once, by a simple scan over
the database to count the supports of candidate
1-sequences. The supports of all candidate 1-sequences are
included in KB, and S[minsup] contains the frequent
1-sequences. At the end of this mining, KB would collect
the supports of all the candidates in each pass, and
KB.base is the minsup designated for this mining.

In addition to the sequential patterns, we also keep the
supports of all counted candidates in KB regardless of their
values for two reasons. First, several currently
non-frequent candidates might turn out to be frequent
when a smaller minsup is specified subsequently. We can
immediately obtain these patterns from KB without any
database access. Second, to find out the true patterns, the
mining process generally counts a large number of
candidates although they are eventually rejected. We can
get rid of the ‘useless counting’ for the ‘commonly
non-frequent’ candidates if their supports were kept. For
example, those candidates ever counted with the support
value of zero would not be inserted into the candidate
hash-tree afterward. Consequently, a faster counting is
enabled due to the smaller hash-tree of the reduced set of
candidates.

For subsequent queries, the non-empty KB contains the
supports of all the generated candidates while mining with
KB.base as the support threshold. Assume that the user
specifies minsup for mining. The values of minsup and
KB.base determine whether new counting is required. If
the minsup is greater than KB.base, we simply retrieve
from KB those patterns satisfying the new minsup. KB and
KB.base stay intact since no counting is performed.
Tremendous gains in performance can be resulted from
direct retrieval of valid patterns from KB without
re-examining the huge database.
 3 $17.00 (C) 2003 IEEE 3

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
Algorithm KISP (DB, KB, minsup)
Input: DB = the database of data sequences; minsup = user specified minimum support ;
 KB = knowledge base having the supports of all the candidates in prior minings
Output : S[minsup] = sequential patterns with respect to minsup; KB = (new) knowledge base

// Let x.sup be the support of a candidate x , Xk[minsup] be the set of candidate k-sequence in DB with
// respect to minsup, and KB.base be the counting base (the smallest minsup used) in constructing the KB
1) if KB = φ then KB = {x and x.sup, ∀ x ∈ X1} ;
2) S[minsup] = {x| x∈KB ∧ x.sup ≥ minsup} ; // obtain valid sequential patterns from knowledge base
3) if minsup < KB.base then // mine new patterns and accumulate new knowledge
4) k = 2 ;
5) generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ;
6) Xk'= Xk [minsup] - {x| x ∈ KB} ; // eliminate those candidate k-sequences in KB
7) while Xk' ≠ φ do // there exist candidate k-sequences, obtains their supports
8) forall data sequences ds in database DB do
9) for each candidate x ∈ Xk' do
10) increase the support of x if x is contained in ds ;
11) endfor
12) endfor
13) KB = KB ∪ {x and x.sup, ∀ x ∈ Xk'} ; // collect new candidates and their supports
14) S[minsup] = S[minsup] ∪ {x | x.sup ≥ minsup ∧ x ∈ Xk'} ; // collect new patterns from Xk'
15) k = k+1 ;
16) generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ;
17) Xk'= Xk [minsup] - {x| x ∈ KB} ; // the reduced set eliminates candidate k-sequences in KB
18) endwhile
19) KB.base = minsup ; // update the counting base of KB
20)endif

Figure 1. Algorithm KISP
In case that minsup is smaller than KB.base, we have to
mine the database for new patterns that are not in KB. The
fundamental difference between KISP and GSP is that
KISP only needs to count the supports of the ‘new’
candidates by sparing the candidates already existing in
KB. Even the modest technique spares the counting of a
substantial number of candidates, as confirmed by our
experiments. In each pass, we first generate the candidates
and then remove those existing in KB. Next, we expand
KB with the support of every new candidate to re-use the
counting effort for future queries. The sequential patterns
are collected for the corresponding query. Finally, KB.base
is replaced by the new minsup since the counting base is
changed. The ‘new pattern’ mining part, which is also the
part of new information acquisition step, of the procedure
is activated only when the subsequent minsup is smaller
than KB.base.

The counting effort of each mining incrementally
expands KB so that KISP is gradually enhanced with
greater candidate reduction capability. KISP becomes
more powerful as the minsup gets smaller gradually during
the interactive process.

4.2. New-candidate generation by direct
 0-7695-1874-5/0
computation

As described in Section 4.1, KISP removes the
candidates existing in KB before counting. The remaining
candidates are referred to as new-candidates. Instead of
generating all candidates and then removing the counted
ones, we use Theorem 1 to generate the new-candidates in
pass k (denoted by Xk') directly. In Theorem 1, Sk[minsup]
denotes the set of frequent k-sequences, Xk[minsup]
denotes the set of candidate k-sequences with respect to
minsup, and “⊗” represents the join operation described in
Section 3.1. We use Nk[minsup] to designate the new
frequent k-sequences (due to minsup) by contrast to the
frequent k-sequences in KB. Hence, Sk[minsup] =
Sk[KB.base] ∪ Nk[minsup].
Theorem 1. Xk' = (Sk-1[KB.base] ⊗ Nk-1[minsup]) ∪
(Nk-1[minsup] ⊗ Nk-1[minsup]). That is, Xk' is the union of
the two sets; one obtained from joining the frequent
(k-1)-sequences in KB with the new frequent
(k-1)-sequences, the other obtained from self-joining the
new frequent (k-1)-sequences.
Proof. By definition, Xk[minsup] = Sk-1[minsup] ⊗

Sk-1[minsup].
1) Xk[minsup] = (Sk-1[KB.base] ∪ Nk-1[minsup]) ⊗
3 $17.00 (C) 2003 IEEE 4

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
(Sk-1[KB.base] ∪ Nk-1[minsup]).
2) Xk[minsup] = (Sk-1[KB.base] ⊗ Sk-1[KB.base]) ∪

(Sk-1[KB.base] ⊗ Nk-1[minsup]) ∪ (Nk-1[minsup] ⊗
Sk-1[KB.base]) ∪ (Nk-1[minsup] ⊗ Nk-1[minsup]).

3) Xk[minsup] = Xk[KB.base] ∪ (Sk-1[KB.base] ⊗
Nk-1[minsup]) ∪ (Nk-1[minsup] ⊗ Nk-1[minsup])
due to Xk[KB.base] = Sk-1[KB.base] ⊗ Sk-1[KB.base] and
that Nk-1[minsup] ⊗ Sk-1[KB.base] is the same set as
Sk-1[KB.base] ⊗ Nk-1[minsup].

4) Since Xk' = Xk[minsup] − Xk[KB.base], Xk' =
(Sk-1[KB.base] ⊗ Nk-1[minsup]) ∪ (Nk-1[minsup] ⊗
Nk-1[minsup]). �

4.3. Concurrent support counting and the
placement of variable sized candidates

KISP might have only very few new-candidates at a
very low minsup value since the information gathered
from each mining all contribute to the candidate reduction.
In each pass, the number of candidates inserted into the
hash-tree is far less than that of GSP. Thus, KISP is
enabled to accommodate more candidates in the same
hash-tree during the same pass of database scanning.
Consequently, we may release the restriction of counting
only candidate k-sequences to count variable sized
candidates concurrently in pass k, and reduce the total
number of database passes.

KISP assumes nothing about the main memory size so
that the available memory might be insufficient for
generating new candidate k-sequences. Analogous to GSP,
if the set of frequent (k-1)-sequences cannot fit into the
memory, we apply the relational merge-join technique
without pruning [14] to generate Xk', and then output Xk' to
disk after counting.

On the contrary, the set of Xk' is possibly small and
occupies only a small part of the memory. We maximize
memory utilization by continuously generating the
candidates of longer size into the hash-tree until the
memory space is nearly full. KISP can estimate the space
required for Xk' with Sk-1[KB.base] and Nk-1[minsup], as
described in the following.

Considering the number of candidates generated in each
pass, X2' has more candidates than any other Xk' because
none in the candidate superset of size two can be pruned.
For candidates of Xk' where k > 2, some frequent
(k-1)-sequences are not to be joined if their subsequences
do not match. Assume the number of patterns in
S1[KB.base] is p and the number of patterns in N1[minsup]
is q. The number of new-candidates in pass 2 is
[3(p+q)2-(p+q)]/2-(3p2-p)/2 = 3pq+(3q2-q)/2. This formula
can be applied to estimate roughly the maximum number
of candidates in other passes. Whenever there is room for
the next set of candidates in a batch, KISP continuously
generates and inserts them into the same hash-tree.

 0-7695-1874-5/03
The hash-tree in GSP is designed to store the same
sized candidates in the leaves originally. Accommodating
variable sized candidates in the same hash-tree might
produce the problem of having no item for hashing. For
example, inserting a candidate 4-sequence might cause the
re-distribution of an overflowed node, while the
re-distribution might need to hash on the fourth item of a
candidate 3-sequence in the node. We modify the hashing
procedure to put the same prefixed candidates, despite
their sizes, in the same leaf. In case there is no item for
hashing any more, the candidate is stored in one of the
descendent leaves (due to splitting the overflowed leaf).
We select the leaf having the fewest number of candidates
stored to maximize memory utilization. Since candidates
of different size are stored in the same hash-tree, we can
check the variable sized candidates against a data sequence
at the same time. Therefore, the concurrent support
counting minimize the number of database scanning
required in KISP.

Note that a similar technique named pass bundling is
described for association mining in [8]. However, pass
bundling statically sets a limit to determine whether the
generation should be continued or not, while KISP
dynamically estimates and computes the available memory
for maximum utilization.

4.4. Manipulation of the knowledge base

The knowledge base should provide fast access to the
supports of patterns, support quick estimation of candidate
storage required, and be able to expand incrementally.
Figure 2 displays the logical structure of the knowledge
base.

 A knowledge base is composed of a minimal
KB.base, and one or more KB heads. The minimal
KB.base is the smallest KB.base among all the KB.bases in
the KB heads. We create a KB head to store the newly
acquired information only when the ‘new pattern’ mining
part of KISP is executed. A KB head comprises (1) a
KB.base indicating the counting base while adding this
head (2) the number of pattern-support heads
(ps_heads) indicating the total number of pattern-support
heads in this KB head (3) the pattern-support heads
summarizing the pattern-support tables, and (4) the
position of next KB head linking the next KB head so that
the knowledge base can ‘grow’ incrementally.

We group all the same sized patterns in the
pattern-support tables so that the pattern information of
desired size can be directly found through the position of
pattern-support in the corresponding ps_head. The
summary information (the size of the pattern, the total
number of counted candidates, and the total number of
non-zero patterns) in ps_head is used to estimate the
number of new-candidates. The pattern-support table is a
list of (support, pattern)-pairs. Note that we keep only the
 $17.00 (C) 2003 IEEE 5

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
patterns with non-zero support value to minimize the total
size of each pattern-support table. The supports of patterns
(of the same size) are stored in support-descending order
in the structure to ease the searching of valid patterns on
answering an online query. An option to eliminate support
sorting is writing the supports in the order of hash-tree
traversal. Even when the pattern supports are directly
stored without sorting, searching within the knowledge
base is still more efficient than re-mining.

5. Experimental results

Several experiments were conducted to assess the
performance of the KISP algorithm, using an 866 MHz
Pentium-III PC with 256MB memory running the
Windows NT. Like most studies on sequential pattern
mining [2, 4, 12, 14, 16], we generated the synthetic
datasets for these experiments using the procedure
described in [2]. Due to space limit, we only report the
results on dataset C20-T2.5-S4-I1.25 having 100,000
sequences, |N=10000, NS=2500, and NI=25000. We refer
readers to [2] for the details of the parameters.

5.1. Comparisons of KISP and GSP

The effect of using knowledge base without concurrent
counting optimization is studied first. The interactive
discovery comprises five consecutive queries, with minsup
values starting from 2.5% down to 0.5%.

Figure 3 compares the relative performance of KISP
and GSP. The total execution time is 435 minutes by KISP
and 799 minutes by GSP. KISP runs faster than GSP for
individual mining except for the very first mining. Figure
3 also depicts the ratios of the number of candidates in
GSP to those in KISP. Take minsup = 0.75% for example,
the execution time ratio of GSP to KISP is 2.1 times. The
time saved by KISP resulted from the reduced number of
candidates—GSP counted 2.3 times the number of
candidates. To illustrate the accumulating power of KB,
the number of candidates generated by GSP and by KISP
in each pass is enumerated in Table 1.

KISP exhibits excellent mining capability for query
intensive applications. As we increased the number of
queries from 3 to 11, the average execution time (also the
time required for posterior queries) decreased from 1763
seconds to 514 seconds.

In the experiments with concurrent optimization, the
number of database scanning reduced by concurrent
support counting is 6, and the reduced execution time is 94
seconds for the mining with minsup=0.5%. Most scans
were combined in pass three so that the total number of
passes and the total execution times were reduced.

When users need to find the appropriate set of patterns
by reducing the number of patterns found in a query, the
next specified minsup would be greater than the counting

 0-7695-1874-5/0
base of KB (KB.base). In the next experiment, all
KB.bases of the KBs were 0.5%, and 100 minsups ranging
from 0.5% to 2.5% were randomly selected. The mining
results are all available in very short time with average
execution time 4.3 seconds and maximum execution time
22 seconds. For most queries, the execution time of KISP
is several orders of magnitude faster than GSP, which
always re-mines from scratch. However, one drawback of
KISP is that the size of KB, in proportion to the number of
candidates stored, might be larger than the size of the
original database. For example, the size ratio of KB to DB
is 4.9 for minsup=0.5%.

5.2. Scale-up experiments

In the scale-up experiments, the total number of
customers was increased from 100K to 1000K, running the
same series of minsup (2.5% down to 0.5%). Since KISP
retrieves merely Sk-1[KB.base] (i.e. frequent
(k-1)-sequences in KB) for generating candidate
k-sequences, even without large memory, KISP may
efficiently discover patterns in large databases with KB.
Figure 4 shows that the execution time of KISP increases
linearly as the database size increases. The execution times
are normalized with respect to the time for 100,000
customers.

6. Conclusions

The knowledge discovering process is iterative and
requires many times of mining since no one can predict the
best parameters for the desired outcome. Even a change in
minimum support value would demand current approaches
to execute the time-consuming process again, not to
mention the various query operations such as mining
constrained patterns [11] or patterns with hierarchy [14].

In this paper, we propose a simple but efficient mining
algorithm for interactive discovery of sequential patterns
about varying support thresholds. The proposed KISP
algorithm constructs a knowledge base KB in-disk to
minimize the response time for iterative mining. No
mining is required if the query result is a subset of KB;
otherwise, we speed up individual mining through
accessing only frequent sequences in KB for direct
new-candidate generation. The proposed approach directly
generates only the new candidates not being considered
before, concurrently counts variable sized candidates in
the same database scanning, and incrementally expands
the knowledge base. Only the non-zero patterns grouping
by size are kept to minimize the size of KB while
providing fast access to pattern information. The
performed experiments show that KISP enhances GSP by
several orders of magnitude for interactive sequence
mining, with good linear scalability.

However, the disk space could be a problem without
 3 $17.00 (C) 2003 IEEE 6

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
further investigation on minimizing KB for very low
thresholds. Future work may include the maintenance of
KB for database updating [6]. For interactive queries other
than varying thresholds, though we may answer these
queries by reading patterns in KB into an ISL-like [11]

 0-7695-1874-5/0
pattern-lattice, it is desirable to integrate the query
requirements into KISP for faster response.

KB.base number of ps_heads

position of next KB head

Minimal KB.base

: KB head : pattern-support head (ps_head)

number of non-zero patterns
position of pattern-supportsize of pattern

number of counted candidates

number of non-zero patterns
position of pattern-supportsize of pattern

number of counted candidates

number of non-zero patterns
position of pattern-supportsize of pattern

number of counted candidates

Figure 2. Structure of the knowledge base
C20-T2.5-S4-I1.25

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

250%

2.5% 2% 1% 0.75% 0.50%
minsup

R
at

io
 (

G
SP

/K
IS

P)

Execution time

Number of candidates

Figure 3. Relative mining performance of GSP and KISP
Table 1. Number of candidates in each pass (minsup =0.5%)

Pass number
Number of candidates 1 2 3 4 5 6 7 8

GSP 10000 7673835 7986 2800 1339 430 63 3
KISP 0 3122860 5941 2387 1259 424 63 3
 3 $17.00 (C) 2003 IEEE 7

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
Scale-up Performance of KISP

1.0

3.0

5.0

7.0

9.0

11.0

13.0

15.0

100K 250K 500K 750K 1000K

N umber of customers

Ex
ec

ut
io

n
tim

e
ra

tio 2.50%

2%

1%

0.75%

0.50%

minsup

Figure 4. Linear scalability of the database size

Acknowledgements

The authors thank the reviewers’ comments for
improving the quality of the paper. This research is
supported partially by National Science Council of R.O.C.
and the LEE and MTI Center for Networking Research at
National Chiao Tung Univ., R.O.C.

References

[1] C. C. Aggarwal and P. S. Yu, “Online Generation of
Association Rules,” Proceedings of the 14th International
Conference on Data Engineering, Orlando, Florida, USA, Feb.
1998, pp. 402-411.
[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns,”
Proceedings of the 11th International Conference on Data
Engineering, Taipei, Taiwan, 1995, pp. 3-14.
[3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proceedings of the 20th International
Conference on Very Large Data Bases, Santiago, Chile, Sep.
1994, pp. 487-499.
[4] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal and M.-C.
Hsu, “FreeSpan: Frequent pattern-projected sequential pattern
mining,” Proceedings of the 6th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2000, pp.
355-359.
[5] C. Hidber, Online Association Rule Mining, Technical Report
UCB/CSD-98-1004, U. C. at Berkeley, 1998.
[6] M. Y. Lin and S. Y. Lee, “Incremental Update on Sequential
Patterns in Large Databases,” Proceedings of 10th IEEE
International Conference on Tools with Artificial Intelligence,
1998, pp. 24-31.
[7] H. Mannila, H. Toivonen and A. I. Verkamo, “Discovery of
Frequent Episodes in Event Sequences,” Data Mining and
Knowledge Discovery, Vol. 1, Issue 3, 1997, pp. 259-289.
 0-7695-1874-5/03
[8] A. M. Mueller, Fast Sequential and Parallel Algorithm for
Association Rule Mining: A Comparison, Technical report
CS-TR-3515, University of Maryland, 1995.
[9] B. Nag, P. M. Deshpande and D. J. DeWitt, “Using a
Knowledge Cache for Interactive Discovery of Association
Rules,” Proceedings of the 1999 SIGKDD Conference, San
Diego, California, Aug. 1999, pp. 244-253.
[10] S. Parthasarathy, S. Dwarkadas and M. Ogihara, “Active
Mining in a Distributed Setting,” Proceedings of Workshop on
Large-Scale Parallel KDD Systems, San Diego, CA, USA, Aug.
1999, pp. 65-85.
[11] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas,
“Incremental and interactive sequence mining,” Proceedings of
the 8th International Conference on Information and Knowledge
Management, Kansas, Missouri, USA, Nov. 1999, pp. 251-258.
[12] J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal and M.-C. Hsu,
“PrefixSpan: Mining Sequential Patterns Efficiently by
Prefix-projected Pattern Growth,” Proceedings of 2001
International Conference on Data Engineering, 2001, pp.
215-224.
[13] T. Shintani and M. Kitsuregawa, “Mining Algorithms for
Sequential Patterns in Parallel: Hash Based Approach,”
Proceedings of the Second Pacific–Asia Conference on
Knowledge Discovery and Data mining, 1998, pp. 283-294.
[14] R. Srikant and R. Agrawal, “Mining Sequential Patterns:
Generalizations and Performance Improvements,” Proceedings
of the 5th International Conference on Extending Database
Technology, Avignon, France, 1996, pp. 3-17.
[15] K. Wang, “Discovering Patterns from Large and Dynamic
Sequential Data,” Journal of Intelligent Information Systems, Vol.
9, No. 1, 1997, pp. 33-56.
[16] M. J. Zaki, “Efficient Enumeration of Frequent Sequences,”
Proceedings of the 7th International Conference on Information
and Knowledge Management, Washington, USA, Nov.1998, pp.
68-75.

 $17.00 (C) 2003 IEEE 8

	HICSS36 2003
	Return to Main Menu

